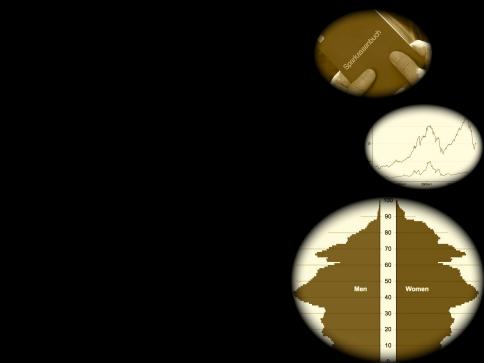
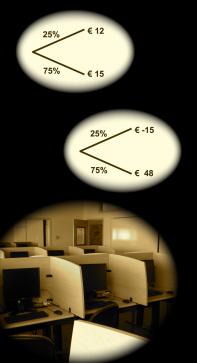
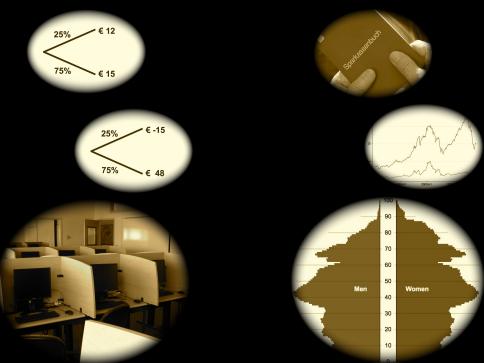
Individual Preferences Over Risk and Portfolio Choice

Hans-Martin von Gaudecker

Universität Bonn


Arthur van Soest


Tilburg University


Erik Wengström

Lund University

ECB Conference on Household Finance and Consumption 17 October 2013

Theoretical specification

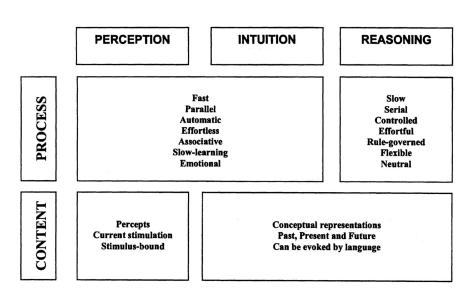
Psychological foundations

Utility formulation

Data

CentERpanel

Our experiment


Descriptives

Empirics

Specification

Exemplatory results

Narrow framing: Psychological foundations

Narrow framing: Psychological foundations

Utility attached to consumption states.

Merge all risks.

Implies risk-neutral behaviour in experiments.

INTUITION

Fast
Parallel
Automatic
Effortless
Associative
Slow-learning
Emotional

REASONING

Slow
Serial
Controlled
Effortful
Rule-governed
Flexible
Neutral

Conceptual representations
Past, Present and Future
Can be evoked by language

Narrow framing: Psychological foundations

Utility attached to consumption states.

Merge all risks.

Implies risk-neutral behaviour in experiments.

Utility attached to changes in accessible outcomes.

Evaluate risks in isolation.

(Stronger) risk aversion in experiments, stock market.

INTUITION

Fast
Parallel
Automatic
Effortless
Associative
Slow-learning
Emotional

REASONING

Slow
Serial
Controlled
Effortful
Rule-governed
Flexible
Neutral

Conceptual representations
Past, Present and Future
Can be evoked by language

Source: Kahneman, AER 2003.

Evolution of wealth

$$ilde{W}_{t+1} = (W_t - C_t) \sum_{\ell \in \mathfrak{L}} heta_{\ell,t} ilde{R}_{\ell,t+1}.$$

Evolution of wealth

$$ilde{W}_{t+1} = (W_t - C_t) \sum_{\ell \in \mathfrak{L}} \theta_{\ell,t} ilde{R}_{\ell,t+1}.$$

Start from standard recursive utility

$$V_t = \left((1 - \beta) C_t^{1-\rho} + \beta x^{1-\rho} \right)^{\frac{1}{1-\rho}}$$

$$x = \mu(\tilde{V}_{t+1}|I_t)$$

Evolution of wealth

$$ilde{W}_{t+1} = (W_t - C_t) \sum_{\ell \in \mathfrak{L}} heta_{\ell,t} ilde{R}_{\ell,t+1}.$$

Start from standard recursive utility

$$V_t = \left((1 - \beta) C_t^{1-\rho} + \beta x^{1-\rho} \right)^{\frac{1}{1-\rho}}$$

► Add narrow framing component

$$x = \mu(\tilde{V}_{t+1}|I_t) + b_0 \sum_{m \in \mathfrak{M}} \nu(\tilde{G}_{m,t+1})$$

where
$$\mathfrak{M}\subset\mathfrak{L}$$
 and $\tilde{G}_{m,t+1}= heta_{m,t}(\tilde{R}_{m,t+1}-R_f)$

▶ Standard specification for $\mu(\cdot)$

$$\mu(\tilde{z}) = (\mathbb{E}\left[(\tilde{z})^{1-\gamma}\right])^{\frac{1}{1-\gamma}}, \ 0 < \gamma \neq 1.$$

▶ Standard specification for $\mu(\cdot)$

$$\mu(\tilde{z}) = (\mathbb{E}\left[(\tilde{z})^{1-\gamma}\right])^{\frac{1}{1-\gamma}}, \ \ 0 < \gamma \neq 1.$$

▶ CE of kinked linear function for $\nu(\cdot)$

$$u(\tilde{G}_{m,t+1}) = v^{-1}\left(\mathbb{E}\left[v(\tilde{G}_{m,t+1})\right]\right),$$

$$v(z) = \begin{cases} z & \text{for } z \ge 0\\ \lambda z & \text{for } z < 0 \end{cases}$$

Theoretical specification

Psychological foundations Utility formulation

Data

CentERpanel

Our experiment

Descriptives

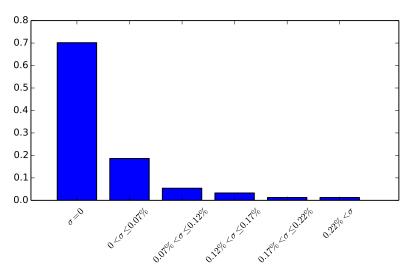
Empirics

Specification

Exemplatory results

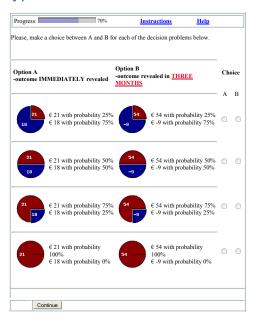
Data: The CentERpanel

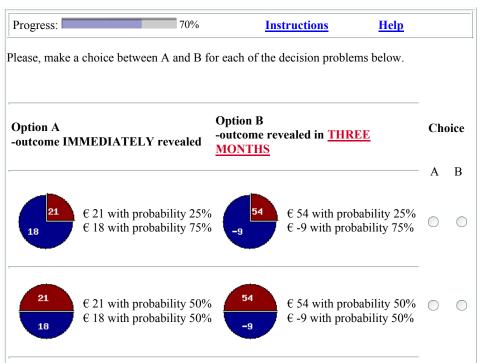
- ▶ Dutch panel of about 2000 households
- Respondents answer questions via Internet or TV
- Wealth of background characteristics


Data: The CentERpanel

- Dutch panel of about 2000 households
- Respondents answer questions via Internet or TV
- Wealth of background characteristics
- Extremely detailed data on individual portfolios

Data: The CentERpanel


- Dutch panel of about 2000 households
- Respondents answer questions via Internet or TV
- Wealth of background characteristics
- Extremely detailed data on individual portfolios
- ▶ 945 financial deciders of households with portfolio information in our experiment


Distribution of risky asset shares

Note: σ denotes the annual standard deviation of households' portfolios, taken from Gaudecker (JF forthcoming)

Screenshot of typical set of choices

Payoffs from the seven lotteries

	Opti	on A	Option B		
Lottery	Low	High	Low	High	
Set	Payoff	Payoff	Payoff	Payoff	
1	27	33	0	69	
2	39	48	9	87	
3	12	15	-15	48	
4	33	36	6	69	
5	18	21	-9	54	
6	24	27	-3	60	
7	15	18	-12	51	

Correlation(portfolio risk, safe experimental choices) < 0

Tobit regression	Number of obs	=	944
	LR chi2(7)	=	138.45
	Prob > chi2	=	0.0000
Log likelihood = -1362.4185	Pseudo R2	=	0.0484

Portfolio Std.Dev.	Coef.	Std. Err.	t	P> t	[95% Co	nf. Int.]
Switchpoint	-0.068	0.028	-2.39	0.017	-0.125	-0.012
Educ: Vocational	2.675	1.129	2.37	0.018	0.459	4.891
Educ: University	4.150	1.379	3.01	0.003	1.443	6.857
Age 36-50	8.654	1.788	4.84	0.000	5.145	12.16
Age 51-65	7.341	1.785	4.11	0.000	3.836	10.84
Age 66+	10.29	1.914	5.38	0.000	6.533	14.04
log(Total Assets)	2.955	0.429	6.87	0.000	2.111	3.799
Constant	-46.21	5.802	-7.96	0.000	-57.59	-34.82
/sigma	11.64	0.55			10.56	12.72

Obs. summary: 662 left-censored observations at sd<=0 uncensored observations

Correlation(portfolio risk, small-stake struct. param's) < 0

Tobit regression				Number of	obs =	825
				LR chi2(8)) =	124.22
				Prob > ch	i2 =	0.0000
Log likelihood = -12	30.2173			Pseudo R2	=	0.0481
Portfolio Std.Dev.						_
Small St. Risk Av	-15.11					
Errors in Exper.	-4.759	2.770	-1.72	0.086	-10.19	0.679
Educ: Vocational	2.030	1.179	1.72	0.085	-0.283	4.345
Educ: University	3.565	1.425	2.50	0.013	0.768	6.363
Age 36-50	8.021	1.837	4.37	0.000	4.415	11.62
Age 51-65	6.598	1.830	3.60	0.000	3.004	10.19
Age 66+	10.28	1.969	5.22	0.000	6.423	14.15
log(Total Assets)	3.015	0.467	6.46	0.000	2.098	3.932
Constant	-48.46	5.941	-8.16	0.000	-60.12	-36.79
/sigma	11.38	0.55			10.28	12.48
Obs. summary:	567 lef	 t-censored	observa	tions at so	 1<=0	

uncensored observations

258

Theoretical specification

Psychological foundations Utility formulation

Data

CentERpanel

Our experiment

Descriptives

Empirics

Specification

Exemplatory results

Discretised choice between safe and risky asset

$$\theta_{\mathsf{risky}} \in \Theta_{\mathsf{risky}} = \{0, 0.2, 0.4, 0.6, 0.8, 1\}$$

Discretised choice between safe and risky asset

$$\theta_{\mathsf{risky}} \in \Theta_{\mathsf{risky}} = \{0, 0.2, 0.4, 0.6, 0.8, 1\}$$

Stochastic utility

$$\mathcal{V}(\theta_i,\cdot) = V(\theta_i,\cdot) + \tau_{\theta} \cdot W_i \cdot \varepsilon_{\theta}$$

Discretised choice between safe and risky asset

$$\theta_{\mathsf{risky}} \in \Theta_{\mathsf{risky}} = \{0, 0.2, 0.4, 0.6, 0.8, 1\}$$

Stochastic utility

$$\mathcal{V}(\theta_i,\cdot) = V(\theta_i,\cdot) + \tau_{\theta} \cdot W_i \cdot \varepsilon_{\theta}$$

▶ Logit choice probabilities $\mathbb{P}(\theta_i)$ with nonlinear index

Discretised choice between safe and risky asset

$$\theta_{\mathsf{risky}} \in \Theta_{\mathsf{risky}} = \{0, 0.2, 0.4, 0.6, 0.8, 1\}$$

Stochastic utility

$$\mathcal{V}(\theta_i,\cdot) = V(\theta_i,\cdot) + \tau_\theta \cdot W_i \cdot \varepsilon_\theta$$

- ▶ Logit choice probabilities $\mathbb{P}(\theta_i)$ with nonlinear index
- Similarly for the experimental choices

$$\mathcal{V}_{\pi}(\theta_{i}, \tilde{\pi}_{i,j}, \cdot) = V_{\pi}(\theta_{i}, \tilde{\pi}_{i,j}, \cdot) + \tau_{\pi} \cdot \varepsilon_{\pi}$$

Likelihood

Conditional on preference type k

$$\mathcal{L}_{i,k} = \mathbb{P}\left(heta_i^{\mathsf{obs}}, \cdot
ight) \ \prod_{i \in \mathfrak{J}_i} \mathbb{P}\left(ilde{\pi}_{i,j}^{\mathsf{obs}}, \cdot
ight)$$

Likelihood

Conditional on preference type k

$$\mathcal{L}_{i,k} = \mathbb{P}\left(heta_i^{\mathsf{obs}}, \cdot
ight) \prod_{j \in \mathfrak{J}_i} \mathbb{P}\left(ilde{\pi}_{i,j}^{\mathsf{obs}}, \cdot
ight)$$

Individual likelihood

$$\mathcal{L}_i = \sum_{k \in \mathfrak{K}} w(X_i, \eta_k) \cdot \mathcal{L}_{i,k}$$

with
$$w(X_i, \eta_k) = \Lambda(X_i \eta_k)$$

Results

► Structurally connected risk preference parameters estimated from experimental data with real-world portfolio choices

- ► Structurally connected risk preference parameters estimated from experimental data with real-world portfolio choices
- Central ingredients
 - ► First order risk aversion
 - Narrow framing

- ► Structurally connected risk preference parameters estimated from experimental data with real-world portfolio choices
- Central ingredients
 - ► First order risk aversion
 - Narrow framing
- First estimates are plausible in magnitude

- ► Structurally connected risk preference parameters estimated from experimental data with real-world portfolio choices
- Central ingredients
 - First order risk aversion
 - Narrow framing
- First estimates are plausible in magnitude
- ► Advantage of estimated structural parameters: Quantitatively meaningful and transportable to a variety of settings